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W Differential Equation

An equation containing the derivatives or differentials of one or more dependent
variables, with respect to one or more independent variables, is said to be a
differential equation (DE).
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Bl IRRlel B B Solution of a Differential Equation

Any function f defined on some interval /, which when substituted into a dif-
ferential equation reduces the equation to an identity, is said to be a solution
of the equation on the interval.
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Initial-Value Problem We are often interested in solving a first-order differ- .
ential equation* solutions of the DE

dy

e fx,y) (1)

subject to a side condition y(x,) = y,, where x is a number in an interval / and
Yy is an arbitrary real number. The problem

dy ‘ 3

Solve: — = f(x,y) e I
dx ' 2)

Subject to:  y(xy) = ¥ Figure 2.1

is called an initial-value problem (IVP). The side condition is known as an ini-
tial condition. ‘



W Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a = x < b,
¢ = y = d that contains the point (x,, y,) in its interior. If f(x, y)and af/dy
are continuous on R, then there exist an interval / centered at x; and a unique
function y(x) defined on / satisfying the initial-value problem (2).
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sl lRRlel B-B B Separable Equation

A differential equation of the form

dy  g(x)

dx  h(y)

is said to be separable or to have separable variables.
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Homogeneous Function

If a function f has the property that
f(tx, ty) = t"f(x, y) (1)

for some real number n, then f is said to be a homogeneous function of

degree n.
O——

)= K o-3x9 +59° o X
¢, € = (e 3RS Cen s E L2

=t oY),
tetx. ) 2 e y),

,ém Y) homegeneons funct
of degre 2

aekx4Y) = Y00 Y). Yy hemogencos funtian of
=t 969) olegree -

= (- 949)
-9(¥ ).



‘J[(X'W" Ay + KA
Seex. 1Y) pEX) "+ () (t9) +20tx) *] -
o A txY 2t x ]
s £2F0y) = t (Y 1)
_ M+ tayretwt
% f0CY) s XH XY r2ux+t

19+ t'fxy or o) yaol ruwher 1,
W"?) 1S ‘\1’_(2’(: on komoﬁevxeous "ﬁm(‘("\ew-



m Homogeneous Equation '
A differential equation of the form /V\ (Xc l? ) ‘\>
M(x.y)dx + N(x,) same

3)

is said to be homogeneous if both coefficients M and N are homogeneous N ( X. (7)

functions of the same degree.
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A differential equation of the form

dy
a(x) et ao(x)y = g(x)

is said to be a linear equation.

Dividing by the lead coefficient a,(x) gives a more useful form, the stan-
dard form, of a linear equation:
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(1) To solve a linear first-order equation first put it into the form (1);
that is, make the coefficient of dy/dx unity.
(i1) Identify P(x) and find the integrating factor

(“

(z11) Multiply the equation obtained in step (i) by the integrating factor:

efP(x)dxﬂ ke P(x)ejl’(x)d.ty = efP(.t)de(x)

X
(iv) The left side of the equation in step (i:i) is the derivative of the product |
of the integrating factor and the dependent variable y; that is, |
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from step V) You set
.\' P wa r ef 'ﬁ)‘l .

j' e,fpua ” fod ¢
Y= o fPear

T




Summon)

oY QU =T (s )
t+ 29 LPR ovdond
O ¢ dx+? 5, §
(Debe :
® ?02=? e B e

® Yo 5 [ [ pofoax «c]

o A4 }Lba9 = f}‘()‘)—fcx)—

oX



Solre ‘%—C -3 =0 % 1P § 3419 stondonel

Step O P(x)= -3. 464> 0.

5P Rdx §-3ax ) 6-3" k_l::_ C:,,str;c

cep (> P" € = € e becowse 'l

- E onb 3!\"0 0$
d 9 = O Mﬂ::\sm

@ = - } ‘iu
ng & IM(X) 3 H Ciw ﬁeansmlz
S AP Y =§00\>< - fjf""o'f"ad" <]
-3%
e Yy==0C c
w > %—-—;— .-/ce'»c = -é:-i;c 2 C—éx




EWPlQ : \‘j"*‘ tcaﬂ K)ge CDS‘X, jw),.,
4 make swe you che K .’f the ﬂweﬂ d.e is lineor, Ttis a 3004 habiv.
equetion iS abesshy fo The Stndard fovm, P9 =Tanx

’(I;ﬂf“‘.'"j Focwor: @ s e canx S

ftmxds = ].5-"‘—"— o let

u:c,oS'X d.u.="8iﬂ)(dx

con X
- ‘.. l-u-‘-olu
. ) ‘ We con owop The constomt C
"l’l"'l | becanse it’ll onlﬂ aNe as oapthey
== CoS A|. .
ef'blm‘“ _.(.lc,:sxlo Lol Vsl Constont ot the enh (“" the omswer. )
- = .« b
=€ = Toon j
_d__. J—' . = —J—Obsz
dx (CDS)Q 3\ oS X "
1. u=[cosxd¥
[dasye
Lo = sinxtC
3 = »SX (.Sinx-fC)
= (oS X sWX + v X
Gue Yloy=-\, —l= D sinO tcemsd=c , C=-l
X ZMJ?

s Y= sinX X = osX on-the mtarvol - Eexex



jm d‘ w definel here,

note that Y% =
YrtonXy = s’ e '
. fo (s defbd ukenw tmx#-b -¥ { _; 6 ’:‘: l'">
simce he WP we ore 3!V¢V\ includes /)c:-o we 2hoosR =
toviek (T, T So whenewwr xe CZ, L), the slution

we howe 1s he solucton b= oh-@.



Exasple (S? q
G (simple version) : X (x-2) y'+2Y=° +his is nst In standol farn)
(v o=

Y
4+ <o I ° ( stondenh on)  Ond IF. O

]
se Froctim Jtcowposirim

2 A B
/ - — aE—
x(x2) = X T =2 > 2. AD +Bx  whey X 2326, 8%
) 2~
= -xt -X]:-? o0 2.4-2A"\-|
2 - . -
Se, 1.F s e'[x(“'”dx, e! # a2 AX: 6 lubd +\nlx-2) elnl*"elulx’ﬂ
X-2
z "‘2“ 'Y’Ll = | ’ Tt will ulw‘Js Sihfl"‘]\j +ts

[dary) = 7




PR Bxact '&C\'Miom 5



sl N aglel V-l Exact Equation

total J.'.[-(wewt‘td

A differential expression

M(x,y)dx + N(x,y)dy

is an exact differential in a region R of the xy-plane if it corresponds to the
total differential of some function f(x, y).A differential equation of the form

M(x,y)dx + N(x,y)dy =0

is said to be an exact equation if the expression on the left side is an exact
differential.
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THEOREM 2.2 B0l IRl an Exact Differential

Let M(x,y)and N(x,y)be continuous and have continuous first partial
derivatives in a rectangular region R defined by a < x < b,c < y < d.
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Bernoulli’s Equation The differential equation ,fl\\g LS Mt @ Ct,

dy e

2 T P(x)y = flx)y", (1)

where n is any real number, is called Bernoulli’s equation. For n = 0 and
n = 1, equation (1) is linear in y. Now for y # 0, (1) can be written as
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y dx y .
If weletw = y'_",n # (0, n # 1, then
dw dy
i | T T g
ax TG, st 4
With these substitutions, (2) can be simplified to the linear equation s [ ¢ &
%‘:— + (1 —n)P(x)w = (1 — n) f(x). = 3)

n

= w leads to a solution of (1). ) - ,
Lg-&l\e. answey will concoln W . 300\ must anql.

o j‘—ﬂ ot -"L'e 'ed.

Solving (3) for w and using y'~
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